Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1247719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860133

RESUMO

The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and ß diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32099660

RESUMO

Mycoplasma suis (M. suis) is an haemotropic Mycoplasma that adheres and invades erythrocytes and is responsible for infectious anaemia of pigs. Infections with M. suis have been reported worldwide. Clinical signs after M. suis infection can be significant particularly for the breeding herd in the period around farrowing but consequences are highly variable with some infected pigs never exhibiting clinical disease. The study aimed to determine the clinical relevance of Giemsa-stained blood smear for the diagnosis of M. suis compared with qPCR results. In our study, the comparison of qPCR results with microscopic investigation of Giemsa-stained blood smears revealed a lower sensitivity of the microscopic method: only 33 out of 102 qPCR positive blood samples were microscopically positive (M. suis visualised). No relationship between mean qPCR loads and microscopic observation was observed. Although more costly, qPCR is probably the best diagnostic tool available today for M. suis diagnosis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30820335

RESUMO

BACKGROUND: Defining shedding and exposure status for PRRSV is essential in herd stabilisation protocols and weaning-age pigs is a key subpopulation. Oral fluid (OF) sampling is a welfare-friendly and cost saving promising alternative to blood sampling. The first objective of our study was to compare the rate of detection of PRRSV-1 in individual serum sample, individual OF sample, litter-based OF sample, collected the day before weaning. The second objective was to evaluate the interest of pooling samples. RESULTS: The study was performed on a 210-sows, PRRSV-1 exposed, with confirmed shedding, non-vaccinated against PRRSV, herd. 80 litters were sampled and 26 were viropositive and therefore included. The rate of detection of PRRSV-1 with RT-qrtPCR in blood samples, iOF and cOF was 67, 23 and 77%, respectively. The Ct values from RT-qrtPCR on collective OF were statistically lower if the serum of the piglet of the litter was positive. The lower the Cycle threshold (Ct) value of RT-qrtPCR on collective OF, the higher the probability that the serum sampled in the same litter was positive. Ability to detect PRRSV RNA after pooling was 67% for sera and 58% for cOF. CONCLUSIONS: The rate of detection of PRRSV-1 was about the same in cOF and blood samples. Virus sequencing, if required, should be performed on individual serum samples. The smaller the Ct of a cOF sample from a litter, the greater the likelihood that the serum sample from a piglet of that litter is positive.A cost-effective and representative sampling protocol to monitor sow herds stabilisation of a sow batch could be: to collect both cOF and one serum sample per litter; to perform firstly RT-qrtPCR on pooled cOF; in case of negative results to consider the batch negative; in case of positive results in a unvaccinated herd or a killed vaccine vaccinated one to consider the batch positive; in case of positive result in a herd vaccinated with a modified live vaccine serum samples of litters with positive cOF should be tested for sequencing (selecting the litters with the lowest Ct for cOF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...